import gmpy2 p =gmpy2.mpz(336771668019607304680919844592337860739) q =gmpy2.mpz(296173636181072725338746212384476813557) e =gmpy2.mpz(65537) phi_n= (p - 1) * (q - 1) d = gmpy2.invert(e, phi_n) print("d is:") print (d)
已知N,e,c,求m
1 2 3 4 5 6 7 8 9 10 11 12 13 14
import gmpy2 p = 336771668019607304680919844592337860739 q = 296173636181072725338746212384476813557 e = 65537 c = 55907434463693004339309251502084272273011794908408891123020287672115136392494 n = p * q fn = (p - 1) * (q - 1) d = gmpy2.invert(e, fn) h = hex(gmpy2.powmod(c, d, n))[2:] if len(h) % 2 == 1: h = '0' + h s = h #s = h.decode('hex') print (s)
import gmpy2 p = 336771668019607304680919844592337860739 q = 296173636181072725338746212384476813557 e = 65537 f = int(open('flag.enc', 'rb').read().encode('hex'), 16) print f n = p * q fn = (p - 1) * (q - 1) d = gmpy2.invert(e, fn) h = hex(gmpy2.powmod(f, d, n))[2:] if len(h) % 2 == 1: h = '0' + h print (h)
低指数攻击
e的选取很小
e的选取很小
1 2 3 4 5 6 7 8 9 10 11
import gmpy2 e = 3 n= 22885480907469109159947272333565375109310485067211461543881386718201442106967914852474989176175269612229966461160065872310916096148216253429849921988412342732706875998100337754561586600637594798877898552625378551427864501926224989873772743227733285336042475675299391051376624685754547818835551263597996620383338263448888107691240136257201191331617560711786674975909597833383395574686942099700631002290836152972352041024137872983284691831292216787307841877839674258086005814225532597955826353796634417780156185485054141684249037538570742860026295194559710972266059844824388916869414355952432189722465103299013237588737 c= 15685364647213619014219110070569189770745535885901269792039052046431067708991036961644224230125219358149236447900927116989931929305133870392430610563331490276096858863490412102016758082433435355613099047001069687409209484751075897343335693872741 print ('n=', n) print ('c=', c) print ('[+]Detecting m...') result = gmpy2.iroot(c, 3) print (' [-]The c has cubic root?', result[1]) if result[1]: print (' [-]The m is:', '{:x}'.format(result[0]) #print (' [-]The m is:', '{:x}'.format(result[0]).decode('hex')) print ('[!]All Done!')
m的 3 次方比N大,但不足够大
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
import gmpy2, time e = 3 n = 114976915747243387792157708464120735018971336213935438953074748276198282761939060395482051056351068439137722626185590043024556656813730840050547350912425438364703854627760482842307943026011880815011654341047422453012558617703411700393668892701036222135444420377515575624398723436532681305293727164639582093389 c = 5828813410620741112500628876643872258919868379601617907887884191584237969605489971465692568848339200057188383649365078832766143513766368216471491824042974016773526107276856706832404477882581400769791378958901067683158857990261489285951805740071223765359992165262854641069674603160977034446644199945940251030 i = 239000000 print ('n=', n) print ('c=', c) print ('[!]Done!\n') print ('[+]Detecting m...') s = time.process_time() while 1: m, b = gmpy2.iroot(c + i * n, 3) if b: print (' [-]m is: ' + '{:x}'.format(int(m))) break #print ' [-]i = %d\r' % i, i += 1 print ('[!]Timer:', round(time.process_time() - s, 2), 's')
import gmpy2 import time from functools import reduce def CRT(items): N = reduce(lambda x, y: x * y, (i[1] for i in items)) result = 0 for a, n in items: m = N / n d, r, s = gmpy2.gcdext(n, m) if d != 1: raise Exception("Input not pairwise co-prime") result += a * s * m return result % N, N # 读入 e, n, c e = 9 n = [142782424368849674771976671955176187834932417027468006479038058385550042422280158726561712259205616626939123504489410624745195777853423961104590708231562726165590769610040722589287393102301338152085670464005026301781192671834390892019478189768725018303217559795377795540494239283891894830166363576205812991157,153610425077816156109768509904751446801233412970601397035720458311275245730833227428213917577405780162151444202393431444812010569489900435979730559895340377469612234558042643742219128033827948585534761030527275423811282367831985007507137144308704413007806012914286105842311420933479771294576841956749281552971,152540067782701001222493009941492423063369171831039847414320547494725020441901272486665728360741395415762864872737675660423920609681185809510355937534756399208661762715484879562585724584849261266873624875852300611683382543315580370484972470694466195837255994159609193239840228218925381488410059939975556977947,125842716702134814646356078531900645012495638692517778270527426844383063904041812273637776798591687732598509470005151551320457132061693618473039437320011446697406190781306264437609046721508738109650829547010385875425097336266103994639126319889016342284747700714199556143378526590058467791687837422897022829661,116144389285266462769913139639175922392318396923181100785008570884082681963637784423143843845816350379438789947802939701820129805341796427821894273985551331666719808355412080909245720551238149511778060242720419584504473490216670437024863860559347959698828131475160058721701582089480924088773887932997353631767,127833907448946785858374094953899556339175475846831397383049660262333005992005484987913355932559627279178940862787593749842796469355336182379062826441222705075178971785791223706944120681105575965622931327112817747065200324610697178273898956820957640413744954233327851461318200323486469677469950386824833536523,130561613227079478921314550968562766645507834694262831586725464124109153306162445639759476845681271537955934718244296904503168256991962908095007040044300188572466395275317838178325500238288302672390013747102961340256309124310478931896245221622317302428447389760864327859640573452084295225059466376349115703119,115953389401040751013569404909249958538962411171147823610874077094621794755967854844224923689925397631692572916641171075740839099217316101334941033937183815345038898177087515909675028366437302462022970987947264115373697445950951595479758872029099661065186221250394358255523574834723958546450323357472451930993,143437107845384843564651522639125300763388830136500260725097766445883003928355325003575359566631064630487365774344508496878731109174874449170057678821440711511966073934025028100604234445470976333825866939923998344367645612128590820812489407412175198698290167077116185959180877334222693344630253253476594907313] c = [85033868418784308573673709960700777350314426427677627319697346811123742342359072170220428874952996988431950989321281905284522596263957356289624365171732095210045916218066135140320107686084053271623461104022705353814233772164502775939590711842361956121603943483040254727995655776263673058788416722141673409688,66065963470666895005407449599703926269325406456711861190876894466341571726360462706664546294453572319565476664348345756905411939632955966517708138047546806602828064213238537646393524578984547577761559965654539771172357089802682793169968961304179886652390277814477825753096636750388350662980872556701402397564,116011740820520887443111656288411611070614127688662643257265381793048354928820176624229624692124188995846076431510548507016903260774215950803926107831505634778278712070141663189086436127990584944132764896694777031370995058271038329228336417590284517922855284619653301817355115583540545182119702335431334401666,97640420284096094887471273365295984332267897927392169402918423863919914002451127544715668846623138003564829254309568918651163254043205129883843425179687841236818720463784828905460885026290909768599562386370732119591181513319548915478512030197629196018254041500662654260834562708620760373487652389789200792120,8112507653841374573057048967617108909055624101437903775740427861003476480616929517639719198652146909660899632120639789106782550275648578142883715280547602249589837441805676364041484345030575130408744621981440093280624046635769338568542048839419939250444929802135605724150484414516536378791500915047844188300,36792148360808115566234645242678223867680969786675055638670907933041180936164293809961667801099516457636164692292891528415720085345494773373966277807505798679784807614784581861287048096977968620964436947452527540958289441390882589051225367658014709290392321808926567572528170531844664734909469690750971883323,53043093283305492238903255767698153246673671181809989362223466090875767705978690531154079519999671834688647277179370374802495005937892824566602423646978168777735383632928274082669949750078161820002768640908750005814934158829006019656592134357897586040866207754535586785064545866404380204728594863102313407789,88499407133762624445946519155722583633934260410706930537441122463087556094734626189377091740335667052378955691250910459790202385799502439716173363179773811920751410726795431402796346647688144853156900427797933862087074385441977254140336390678022955770879265490567987868532251217565094093318626424653599450992,138337520305048557335599940473834485492131424901034295018189264168040969172072024612859307499682986987325414798210700710891033749119834960687318156171051379643844580970963540418974136891389303624057726575516576726845229494107327508855516437230240365759885913142671816868762838801720492804671259709458388192984] print ('[+]Detecting m...') data = zip(c, n) x, n = CRT(data) realnum = gmpy2.iroot(gmpy2.mpz(x), e)[0].digits() print (' [-]m is: ' + '{:x}'.format(int(realnum))) print ('[!]All Done!')
def getd(n,e,dp): for i in range(1,e): if (dp*e-1)%i == 0: if n%(((dp*e-1)/i)+1)==0: p=((dp*e-1)/i)+1 q=n/(((dp*e-1)/i)+1) phi = (p-1)*(q-1) d = gmpy2.invert(e,phi)%phi return d
e = 65537 n = 248254007851526241177721526698901802985832766176221609612258877371620580060433101538328030305219918697643619814200930679612109885533801335348445023751670478437073055544724280684733298051599167660303645183146161497485358633681492129668802402065797789905550489547645118787266601929429724133167768465309665906113 dp = 905074498052346904643025132879518330691925174573054004621877253318682675055421970943552016695528560364834446303196939207056642927148093290374440210503657 c = 140423670976252696807533673586209400575664282100684119784203527124521188996403826597436883766041879067494280957410201958935737360380801845453829293997433414188838725751796261702622028587211560353362847191060306578510511380965162133472698713063592621028959167072781482562673683090590521214218071160287665180751 d=getd(n,e,dp) m=pow(c,d,n) print (binascii.unhexlify(hex(m)[2:]))
def getd(n,e,dp): for i in range(1,e): if (dp*e-1)%i == 0: if n%(((dp*e-1)/i)+1)==0: p=((dp*e-1)/i)+1 q=n/(((dp*e-1)/i)+1) phi = (p-1)*(q-1) d = gmpy2.invert(e,phi)%phi return d
e = 65537 n = 156808343598578774957375696815188980682166740609302831099696492068246337198792510898818496239166339015207305102101431634283168544492984586566799996471150252382144148257236707247267506165670877506370253127695314163987084076462560095456635833650720606337852199362362120808707925913897956527780930423574343287847 c = 108542078809057774666748066235473292495343753790443966020636060807418393737258696352569345621488958094856305865603100885838672591764072157183336139243588435583104423268921439473113244493821692560960443688048994557463526099985303667243623711454841573922233051289561865599722004107134302070301237345400354257869 dp = 734763139918837027274765680404546851353356952885439663987181004382601658386317353877499122276686150509151221546249750373865024485652349719427182780275825